
Abstract. The dynamic behavior of a reaction–diffusion
model of solid-phase combustion is investigated by using
the linear stability analysis method. The diffusion
coefficients of the oxygen gas and the vapor of the com-
bustible solid (Mg) are taken as two controlling param-
eters in the analysis. The bifurcation map obtained
shows three dynamic regions. Region I only shows
stable combustion. Regions II and III both show stable
combustion and oscillatory combustion depending on
the ratio of the two diffusion coefficients. Interestingly
region II also shows a small range of a bistable state
consisting of a stable focus and an oscillating state,
which is like the critical phenomena in phase transitions.
The results indicate that the occurrence of oscillating
combustion requires that the value of the diffusion
coefficient of the Mg vapor should be comparable to or
less than that of the oxygen gas at the same temperature.
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1 Introduction

Rich nonlinear dynamic phenomena in chemical systems
have been observed experimentally and investigated
theoretically in the past few decades [1, 2, 3]. As a
subfamily of nonlinear chemistry dynamics, nonlinear
dynamics in combustion reactions has drawn consider-
able attention in the past 2 decades. The pioneering
work on nonisothermal combustion processes was done
by Uppal et al. [4, 5] and Kubicek et al. [6]. The
mechanisms for some gas-phase combustion systems
have been well examined, among which the most

successfully studied one is the H2–O2 combustion system
[7, 8, 9, 10]. Recently, a more complex nonlinear
phenomenon – chemical waves formed in premixed gas
combustion – has been investigated [11, 12]. Compared
with research on the nonlinear dynamic behavior of gas-
phase combustion systems, less work has been done on
that of solid-phase combustion systems owing to the
complex interactions of chemical and physical processes.
The first solid-phase combustion system that showed
oscillation was recorded in 1898. Since then, several
other solid-phase systems with oscillatory combus-
tion behavior have been reported [13, 14]. In 1978,
Matkowsky and Sivashinsky [15] constructed a mathe-
matical model for the system reported in Ref. [14], and
found its Hopf bifurcation points by nonlinear analysis
of this model. It should be noted that this model merely
concerns solid–gas reactions. In 1990, Bayliss and
Matkowsky [16] modified their previous model into
two models, which are related to solid–gas reactions and
liquid–gas reactions, respectively. They took the same
controlling parameter as that employed in Ref. [15],
which was a product of a dimensionless activation
energy and a factor that is a measure of the difference
between the nondimensionalized temperature of un-
burned reactants and the combustion products. They
detected Hopf bifurcations again and, moreover, two
ways to chaos.
To our knowledge, the models of combustion systems

studied previously explored only solid–gas reactions,
liquid–gas reactions, or gas–gas reactions. Here, how-
ever, we investigate a combustion model in relation
to both solid–gas and gas–gas reactions, in which the
diffusion of gases – a ubiquitous physical process – is
considered. In other words, we investigate a reaction–
diffusion model of solid combustion.
This model comes from a recently discovered oscilla-

tory solid-phase combustion system, i.e., a mixture of
reducing agent Mg, oxidant NH4ClO4, and frequency-
modulating species K2Cr2O7 [17]. The partial pressures of
reacting gases, i.e. oxygen and Mg vapor, as the major
dynamic controlling factors in this model were considered
in Ref. [17]. On the other hand, diffusion coefficients are
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closely related to partial pressures, so they were chosen as
the major controlling parameters. It is worth noting that
the diffusion coefficients of oxygen and Mg vapor were
considered in Ref. [17] to be identical. We think such
simplification may not uncover the effect of gas diffusion
on the dynamic behavior of this system. Thus, in the
present work we select the diffusion coefficients of the two
kinds of reacting gases as different controlling parameters,
and study how they affect the dynamic behavior of the
model systembyusing the linear stability analysismethod.

2 Model and methods

2.1 Model

The model can be written as follows [17],

Mg(s)þO2�!
k1
MgO(s)þ aMg(g); ð1Þ

bMg(g)þMg(s)½ � þO2�!
k2
MgO(s)þ cMg(g); ð2Þ

Mg(g)þO2env(constant)�!
k3
MgO(s); ð3Þ

Mg(g)�!kM Mg(g)env(constant); ð4Þ

O2 �
kO
O2env(constant); ð5Þ

where Mg(s) represents the solid of Mg, Mg(g) the Mg vapor close
to the surface of Mg(s), MgO the solid oxidation product of Mg,
and Mg(g)env and O2env the Mg(g) and O2 in the environment. k1,
k2, and k3 are reaction constants, and kM and kO are diffusion
coefficients for Mg(g) and O2, respectively. a, b, and c are adjust-
able parameters. Processes 1 and 2 are the solid–gas reactions oc-
curring close to the surface of Mg(s), process 3 is the gas–gas
reaction occurring in the environment, and processes 4 and 5 are
physical diffusion processes in relation to Mg(g) and O2, respec-
tively, whose directions of net diffusion are shown by the arrows.
Note that the O2 in processes 1 and 2 is close to the surface of
Mg(s), which is provided by diffusion process 5.

For the simplicity of analysis, let X denote O2, Y denote Mg(g),
which reduces processes 1–5 to the following forms only relating to
gases,

X �!k1 aY ð6Þ

X þ bY �!k2 cY ð7Þ

Y �!k3 ð8Þ

Y �!kM ð9Þ

X  �kO ð10Þ
On the basis of the mass-action law, the reaction-rate equations

are given by

dX=dt ¼ �k1X � k2XY b þ kOðX0 � X Þ ð11Þ
and

dY =dt ¼ ak1X þ ðc� bÞk2XY b � k3Y þ kMðY0 � Y Þ: ð12Þ
For brevity, the following dimensionless equations are intro-

duced for the previous dynamic equations:

dx=ds ¼ �wx� xyb þ ð1� xÞ=t0 ð13Þ
and

dy=ds ¼ awxþ ðc� bÞxyb � vy þ ðy0 � yÞ=t1; ð14Þ
with the scalings x ¼ X/X0, y ¼ Y/X0, s ¼ k2Xb

0 t, w ¼ k1=k2Xb
0 ,

v ¼ k3=k2Xb
0 , t0 ¼ k2Xb

0 =kO, and t1 ¼ k2Xb
0 =kM.

In order to compare our results with the results of experiments,
we use the same numerical parameters as those in Ref. [17], i.e., let
a ¼ 1, b ¼ 2, c ¼ 3, w ¼ 1/650, v ¼ 1/20, and y0 ¼ 0.006. As such,
the dynamic equations for a certain system of this type are obtained
as

dx=ds ¼ �ð1=650Þx� xy2 þ ð1� xÞ=t0 ð15Þ
and

dy=ds ¼ ð1=650Þxþ xy2 � ð1=20Þy þ ð0:006� yÞ=t1: ð16Þ
After these deductions, t0 and t1, respectively relating to

the diffusion coefficients of O2 and Mg(g), become two dynamic
controlling parameters in the following analysis.

2.2 Methods

First, the steady-state solutions of Eqs. (15) and (16) are obtained
by zeroing them and keeping the real solutions only. Afterwards,
the stability of the steady points is obtained by analyzing the ei-
genvalues of the Jacobian matrix of the Eqs. (15) and (16) at the
corresponding steady points. This procedure is referred to as linear
stability analysis [18]. As already stated, there are two changeable
parameters, t0 and t1, in the analysis. For convenience, we let t0 be
fixed, then draw the curve of y* against t1, where y* is the y-
coordinate of the steady points gained by zeroing Eqs. (15) and
(16). In addition, whether this model has periodic solutions or other
complicated solutions can be judged by analyzing the correspond-
ing bifurcation diagram of the system, which is plotted using the
Poincaré section method [19]. In the following analysis, keep in
mind that stable-state solutions represent stable combustion and
that periodic solutions represent oscillatory combustion.

3 Results and discussion

A bifurcation map that plots two curves of critical
steady points in t0–t1 space is shown in Fig. 1. Figure 1
clearly shows three dynamic regions, and they are
described in detail in the following.
Region I (47.5 > t0 > 0): As shown in Fig. 1, there

are two critical steady points in region I, but it should be
noted that Cl is always on the right of Cu, indicating that

Fig. 1. Bifurcation map in the t0–t1 parameter space. Three
dynamic regions marked I, II, and III. Cl and Cu denote the lower
and upper critical steady points, respectively. Region I is split into
three areas by Cl and Cu, marked 1, 2, and 3, which represent
monostability, bistability, and monstability, respectively. Region II
is split into three areas, areas 4 and 6 being monostable, area 5 in
oscillation. Region III is divided into areas 7 and 8, being
monostable and in oscillation, respectively
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this region is characterized as bistable. A typical case of
such bistability for t0 ¼ 10 is shown in Fig. 2a, where the
solid curve represents stable steady points and the da-
shed curve unstable ones. In this region, no limit cycle
emerges, indicating that combustion is stable no matter
how t1 varies. However, the case changes when t0 ¼ 47.5,
a critical case corresponding to the crossing in Fig. 1.
See Fig. 2b for t0 ¼ 47.5; Cu and Cl have the same t1. We
can see clearly that the bistability has changed to
monostability with a big leap. After t0>47.5, the system
goes into region II, the most interesting region here.
Region II (82.6 > t0 > 47.5): As indicated in

Fig. 1, after t0>47.5, the relative positions of Cl and
Cu in region II are reversed from those in region I, i.e.,
Cl is on the left of Cu. In this region, we take the case
of t0 ¼ 70, for example. See Fig. 2c for t0 ¼ 70, com-
pared with Fig. 2a for t0 ¼ 10, the upper unstable
section has walked beyond the lower right stable
endpoint, i.e., an intermittence has come into being
between the two parts of monostability, suggesting
the possibility of observing more interesting dynamic
behavior, such as Hopf bifurcation. On the basis of the
bifurcation diagram in Fig. 3 for t0 ¼ 70, we indeed
detect two bifurcation points, one at t1 ¼ 68.00, the

other at t1 ¼ 189.20. However, what surprises us more
is that in Fig. 2c, Cl, the turning point from a stable
focus to an unstable focus obtained by linear stability
analysis, is at t1 ¼ 69.13, different from t1 ¼ 68.00 ob-

Fig. 2a–d. Steady points diagrams (only variation of y* versus t1 is
plotted). The solid curves denote stable steady points and the broken
curves denote unstable steady points. a t0 ¼ 10, a case in region I.
Both the left of Cu and the right of Cl are monostable, but the part
between Cu and Cl is bistable. b t0 ¼ 47.5. This is the critical case
transiting from region I to region II, whose Cu and Cl have the

same t1. It is monostable with a big leap. c t0 ¼ 70, a case in
region II. Cl and Cu are two Hopf bifurcation points, in which Cl is
at t1 ¼ 69.13 (in comparison with the bifurcation point B in Fig. 3)
and Cu at t1 ¼ 189.19 d t0 ¼ 100, a case in region III. Only a
monostable and an oscillating state exist. Cl is the unique Hopf
bifurcation point

Fig. 3. Bifurcation diagram for t0 ¼ 70. The value of t1 at the
bifurcation point B is 68.00
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tained from the bifurcation diagram. In terms of Hopf
bifurcation theory, Cl must be a well-defined Hopf bi-
furcation point. That is to say, in the case of t0 ¼ 70,
there seems to be two attracting basins, respectively
corresponding to a stable point and a limit cycle
between the range of t1 ¼ 68.00–69.13. This is proved
to be right. The results of numerical integration at
t0 ¼ 70.00 and t1 ¼ 69.00 are shown in Fig. 4. Points 1
and 2 spiral inwards and outwards, respectively, – the
same limit cycle, while point 3 spiral inwards – a stable
point. Another point of interest in this coexisting case
is that the stable point is very close to the limit cycle in
the phase space, indicating that the stable point is
‘‘unstable’’, because once a tiny perturbation is intro-
duced, it would probably walk into the limit cycle. This
phenomenon seems like the critical phenomena in
phase transitions. For example, although overheated
water can exist in reality, it is unstable because if a bit
of dust is introduced it will probably vaporize sud-
denly. The following area ranging from t1 ¼ 69.13 to
189.19 is only characterized as an oscillation. When
t1 > 189.19, the limit cycles disappear, and the stable
points appear again. Though only the case of t0 ¼ 70 is
discussed here, the other cases in region II are the same
to t0 ¼ 70. In addition, another hallmark in region II is
that the value of t1/t0 at Cl almost equals unity (see
Fig. 5).

From Fig. 1, we can see that the upper dashed line at
t0 ¼ 82.60 is the asymptote for Cu, beyond which the
system will enter region III.
Region III (t0>82.60): In region III, there is only one

critical steady point, Cl, and it is a Hopf bifurcation
point. In contrast to region II, there is not a coexisting
state, and the value of t1/t0 at Cl is larger than unity and
increases with the increment of t0. In summary, only two
states exist in region III: a monostable state and an
oscillating state.
All the results are summarized in Table 1, giving the

essential nonlinear dynamic features of the model in
different dynamic regions. From Table 1, we can see that
only two combustion states exist, i.e., stable combustion
and oscillating combustion. We next answer in what
conditions the oscillating combustions could occur in
this model of the Mg–O2 combustion system. It is readily
obtained from Fig. 5 or Table 1 that the conditions are
t0 > one constant (47.5) and t1 ‡ t0. Keep in mind that
t0 ¼ k2Xb

0 =kO and t1 ¼ k2Xb
0 =kM. Therefore, the condi-

tions obtained indicate that kO must be less than one
value and that kM must be comparable to or less than kO
if oscillations are expected to occur in this Mg–O2 sys-
tem. This result can be easily understood. As we know,
the magnitude of kO mainly affects the rate of offering
O2 to the surface of Mg(s) in processes 1 and 2. If kO is
very large, the partial pressure of O2 existing close to the

Fig. 5. The curve of variation of t1/t0 at Cl versus t0. Regions I, II,
and III correspond to those in Fig. 1. Note that in region II, the
values of t1/t0 almost equal unity, while in region III, the values of
t1/t0 are larger than unity, and increase with the increment of the
value of t0

Fig. 4. Illustration of the coexisting state of one stable point and
one limit cycle in phase space, modeled at t0 ¼ 70.00 and
t1 ¼ 69.00. Points 1, 2, and 3 are three starting points, in which
points 1 and 2 spiral inwards and outwards, respectively, – the
same limit cycle–, while point 3 spirals inwards – a stable point

Table 1. Nonlinear dynamic behavior of the model in the three regions

Region Range Nonlinear dynamic behavior

Region I 47.5>t0>0 Sequentially showing monostability, bistability, and monostability as t1 increases
Critical case t0=47.5 Just showing monostability with a big leap
Region II 82.6>t0>47.5 Showing two Hopf bifurcation points. Sequentially experiencing a monostable state, a

coexisting state for a stable point and a limit cycle, an oscillating state, and a monostable
state as t1 increases. The values of t1/t0 at Cl essentially equal unity

Critical case t0=82.6 One of the two Hopf bifurcation points extends towards the infinite
Region III t0>82.6 Only a monostable state and an oscillating state exist. Compared with region II, the values

of t1/t0 at Cl are larger than unity and increase with the increment of t0
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surface of Mg(s) will almost equal that of O2 in the en-
vironment, becoming a constant; consequently, no os-
cillation can occur. On the other hand, if kM is markedly
greater than kO, Mg(g) cannot be accumulated, also no
oscillation can occur. It should be noted that this result
is obtained only from the viewpoint of chemical reaction
dynamics, not from the properties of atoms and mole-
cules.
Assume that in this Mg–O2 combustion system the

vapor of Mg diffuses in the form of monoatoms and that
Mg gas atoms and O2 molecules are ideal gases of sta-
tistical mechanics, then the crude value of t1/t0 can be
estimated to be 1.22 (atomic weight of Mg/molecular
weight of O2)

1/2, which is larger than unity. According to
the second condition stated earlier, oscillations could
occur in the real system, explaining in part the occur-
rence of the oscillations observed in the corresponding
experiment [17].
On the basis of the linear stability analysis of the

simple reaction–diffusion model of the Mg–O2 solid-
phase combustion system, we believe that the diffusion
coefficients of reacting gases indeed mightily affect the
dynamic behavior of the system. We also obtained some
interesting results and phenomena. It would be inter-
esting if these results and phenomena could be examined
in real systems.

Acknowledgements. The authors gratefully thank Hong Li Wang
for fruitful discussions. This work was supported financially by the
National Natural Science Foundations of China (29873006).

References

1. Field RJ, Burger M (1985) Oscillations and traveling waves in
chemical systems. Wiley, New York

2. Gray P, Scott SK (1990) Chemical oscillations and instabilities.
Non-linear chemical kinetics. Clarendon, Oxford

3. Scott SK (1991) Chemical chaos. Clarendon, Oxford
4. Uppal A, Ray WH, Poore AB (1974) Chem Eng Sci 29:967
5. Uppal A, Ray WH, Poore AB (1976) Chem Eng Sci 31:205
6. Kubicek M, Hofmann H, Hlavacek V, Sinkule J (1980) Chem
Eng Sci 35:987

7. Baulch DL, Griffiths JF, Pappin AJ, Sykes AF (1988) Combust
Flame 73:163

8. Johnson BR, Griffiths JF, Scott SK (1991) J Chem Soc Faraday
Trans 87:523

9. Johnson BR, Griffiths JF, Scott SK, Tomlin AS (1991) J Chem
Soc Faraday Trans 87:2539

10. Gray P, Griffiths JF, Scott SK (1984) Proc R Soc Lond Ser A
394:243

11. Scott SK, Wang J, Showalter K (1997) J Chem Soc Faraday
Trans 93:1733

12. Pearlman H (1997) J Chem Soc Faraday Trans 93:2487
13. Gol’binder AI, Goryachev VV (1961) Russ J Phys Chem 35:889
14. Merihanov AG, Filonenko AK, Borovinskaya IP (1973) Sov

Phys Dokl 208:122
15. Matkowsky BJ, Sivashinsky GI (1978) SIAM J Appl Math

33:465
16. Bayliss A, Matkowshy BJ (1990) SIAM J Appl Math 50:437
17. Feng C-G, Zeng Q-X, Wang L-Q, Fang X (1996) J Chem Soc

Faraday Trans 92:2971
18. Liu B-Z (1994) Fundamentals of nonlinear dynamics and chaos

(in Chinese). Northeast Normal University Press, Chang Chun
19. Parker TS, Chua LO (1989) Practical numerical algorithms for

chaotic systems. Springer, Berlin Heidelberg New York

361


